
SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Expanded overview of the HUMAnN2 method. (a) HUMAnN2 implements a 

tiered meta’omic search that aims to explain the origin of microbial community DNA or RNA reads based 

on the pangenomes of detected microbes before falling back to more computationally expensive 

translated search. (b) The tiered search produces alignments of reads to coding sequences of known or 

ambiguous taxonomy. These alignments are processed in a species-specific manner to calculate gene 

family abundance and reconstruct community metabolic pathways. (c) HUMAnN2 thus provides, for each 

community meta'ome: per-gene abundances, pathway presence/absence calls and abundances, and 

downstream visualization and statistical tests. 

 

  



Supplementary Figure 2. Reference hold-out analysis of a complex synthetic metagenome. We 

constructed and analyzed with HUMAnN2 a 100-member mock-even synthetic metagenome containing 

only non-human associated species (~2x coverage per species). (a) Variation in the number of reads 

sampled per gene (compared with a genome’s average fold-coverage) makes a non-trivial contribution to 

the error in per-species gene abundance estimation in HUMAnN2 (roughly 0.1 Bray-Curtis dissimilarity 

units). (b) Accuracy of community-level gene family abundance estimation decreases linearly with the 

number of community species missed by HUMAnN2’s taxonomic prescreen (simulated here by excluding 

sets of species from the underlying pangenome reference collection). (c) HUMAnN2’s overall runtime 

increases linearly as more species are excluded from the taxonomic prescreen (which results in more 

work being done during translated search). Runtimes reflect execution using 8 CPU cores. 

  



Supplementary Figure 3. HUMAnN2 tiered search performance on human metagenomes. We 

applied HUMAnN2’s tiered search to profile 397 first-visit HMP metagenomes on Harvard University’s 

Odyssey Research Computing Cluster (8 CPU cores per job). Sample counts per body site were as 

follows: 54 for anterior nares, 65 for buccal mucosa, 68 for supragingival plaque, 73 for tongue dorsum, 

76 for stool, and 34 for posterior fornix. (a) At most body sites, ~60% of reads were explained by detected 

pangenomes, with (b) an additional ~20% explained by downstream translated search (~80% total). 

Pangenome search performance (c) consistently exceeded translated search performance (d) by 1-2 

orders of magnitude. From smallest to largest, box plot elements in panels a-d represent the lower inner 

fence, first quartile, median, third quartile, and upper inner fence. Horizontal red lines indicate the median 

value over all samples. (e) Total runtime is largely dictated by the number of reads passed to translated 

search, and (for HMP samples with <100M reads) was approximately linear in the number of input reads 

(~1 hr/5M input reads). (f) Peak memory use was sublinear in the number of input reads and very 

predictable. The cluster of outliers in (f) results from large samples that were requeued during their runs: 

these samples resumed later in the HUMAnN2 workflow and hence display smaller peak memory use. 

 



Supplementary Figure 4: HUMAnN2 compared with other methods (details). We profiled a 10M read 

synthetic gut metagenome using HUMAnN2 (tiered and pure translated search modes), HUMAnN1
1
, 

COGNIZER
2
, MEGAN

3
, and ShotMAP

4
 to produce profiles of COG

5
 abundance. Here, expected (gold 

standard) and observed COG abundances are compared in units of copies per million (CPMs; i.e. raw 

abundance normalized by gene length and number of mapped reads). HUMAnN2’s tiered search was 

considerably more accurate than the other methods based on pure translated search. HUMAnN2’s pure 

translated search showed better agreement than other translated search methods, with its largest source 

of error being underreporting of low-abundance COGs (false negatives). This behavior is expected from 

the translated search coverage filters used in HUMAnN2, which we use to limit false positive detection 

events (i.e. COGs with zero expected abundance and non-zero observed abundance). Ticks in the x- and 

y-axis margins represent zero values; x-axis ticks are false negatives and y-axis ticks are false positives. 

 

 



Supplementary Figure 5. Protein coverage thresholds in translated search. If two largely unrelated 

proteins share local sequence homology, reads drawn from the homologous region will map to both 

proteins, potentially resulting in false positive detection events. To limit such events, we require a 

threshold fraction of sites in a protein to recruit reads during translated search before considering the 

protein “detected.” We evaluated potential thresholds by analyzing the results of pure translated search of 

synthetic metagenomes versus the UniRef90 database. Trade-offs between sensitivity and precision are 

shown for the 100-member, even, non-human-associated metagenome in (a), and the 20-member, 

staggered, human-gut-associated metagenome in (b). When all community genomes are well-covered, a 

50% coverage threshold (HUMAnN2’s default) yields a marked increase in precision with only minor loss 

of sensitivity (a). Loss of sensitivity is higher at this threshold when rare (low-coverage) genomes are 

included, as genes in low-coverage genomes often fail to meet the coverage threshold due to insufficient 

read sampling (b). These evaluations do not reflect any additional post-processing of translated search 

results (e.g. weighting by alignment quality), which provide additional accuracy improvements. 

 

  



Supplementary Figure 6: HUMAnN2 compared with other methods: synthetic metatranscriptome 

evaluation. We profiled a 10M-read synthetic gut metatranscriptome using HUMAnN2 (tiered and pure 

translated search modes), HUMAnN1, COGNIZER, MEGAN, and ShotMAP to produce profiles of 

community-level COG transcript abundance. Twenty species’ genomic abundance values were 

geometrically staggered (as in the gut metagenome evaluation), while genes (transcripts) were sampled 

within-species following a log-normal distribution [ln N(0, 1)]. (a) Measures of methods’ accuracy and 

performance in this evaluation. All methods were allowed to use 8 CPU cores and up to 30 GB of 

memory. This panel is analogous to Fig. 1e (which focuses on metagenomic COG abundance in the 

same synthetic community). (b) Observed versus expected COG transcript abundance across the six 

methods. This panel is analogous to Supplementary Fig. 4. CPM refers to “copies per million.” Ticks in the 

x- and y-axis margins represent zero values; x-axis ticks are false negatives and y-axis ticks are false 

positives. 

  



Supplementary Figure 7: HUMAnN2 compared with other methods: novel isolates of known 

species, UniRef90-based COG gold standard. We profiled a 10M-read synthetic metagenome using 

HUMAnN2 (tiered and pure translated search modes), HUMAnN1, COGNIZER, MEGAN, and ShotMAP 

to produce profiles of community-level COG abundance. Twenty recent, new isolates of known species 

(i.e. species present in HUMAnN2’s pangenome database) were sampled at staggered relative 

abundance. (a) Measures of methods’ accuracy and performance in this evaluation. All methods were 

allowed to use 8 CPU cores and up to 30 GB of memory. This panel and analysis are analogous to those 

in Fig. 1e. (b) Observed versus expected COG transcript abundance across the six methods. This panel 

is analogous to Supplementary Fig. 4. CPM refers to “copies per million.” Ticks in the x- and y-axis 

margins represent zero values; x-axis ticks are false negatives and y-axis ticks are false positives. 

 

  



Supplementary Figure 8: HUMAnN2 compared with other methods: novel isolates of known 

species, UniRef50-based COG gold standard. This figure mirrors Supplementary Fig. 6 above, except 

that COG annotations are defined based on co-clustering with UniRef50 families (rather than UniRef90). 

Similarly, HUMAnN2 was run in UniRef50 mode. These changes will tend to favor sensitivity over 

specificity during both isolate genome annotation and profiling. (a) Accuracy and performance of the six 

functional profiling methods. (b) Observed versus expected COG abundance. 

  



Supplementary Figure 9: HUMAnN2 compared with other methods: isolates of novel species, 

UniRef90-based COG gold standard. We profiled a 10M-read synthetic metagenome using HUMAnN2 

(tiered and pure translated search modes), HUMAnN1, COGNIZER, MEGAN, and ShotMAP to produce 

profiles of community-level COG abundance. Twenty recent, new isolates of novel species (i.e. species 

not present in HUMAnN2’s pangenome database) were sampled at staggered relative abundance. Note 

that, in this context, HUMAnN2’s tiered search relies entirely on the translated search phase to explain 

sample reads. (a) Measures of methods’ accuracy and performance in this evaluation. All methods were 

allowed to use 8 CPU cores and up to 30 GB of memory. This panel and analysis are analogous to those 

in Fig. 1e. (b) Observed versus expected COG transcript abundance across the six methods. This panel 

is analogous to Supplementary Fig. 4. CPM refers to “copies per million.” Ticks in the x- and y-axis 

margins represent zero values; x-axis ticks are false negatives and y-axis ticks are false positives. 

Vertical striping of “expected COG abundance” results from single-copy COGs that were only assigned to 

one genome (and hence all have the same expected coverage). 

  



Supplementary Figure 10: HUMAnN2 compared with other methods: isolates of novel species, 

UniRef50-based COG gold standard. This figure mirrors Supplementary Fig. 8 above, except that COG 

annotations are defined based on co-clustering with UniRef50 families (rather than UniRef90). Similarly, 

HUMAnN2 was run in UniRef50 mode. These changes will tend to favor sensitivity over specificity during 

both isolate genome annotation and profiling. (a) Accuracy and performance of the six functional profiling 

methods. (b) Observed versus expected COG abundance. 

  



Supplementary Figure 11. Contributional diversity at additional oral sites. This figure follows the 

format of Fig. 2 from the main text and includes data for two additional oral body sites: buccal mucosa 

and supragingival plaque. Stars indicate background species-level community diversity. 

 

  



Supplementary Figure 12. Additional examples of core human microbiome pathways with low 

within-subject and low between-subject contributional diversity. Bar heights represent the total 

relative abundance of the pathway and are log-scaled. Contributions of individual 

species/other/unclassified are linearly scaled within the total bar height. 

 

  



Supplementary Figure 13. Non-vaginal examples of human microbiome pathways with simple but 

varied contributional diversity. Bar heights represent the total relative abundance of the pathway and 

are log-scaled. Contributions of individual species/other/unclassified are linearly scaled within the total bar 

height. 

  



Supplementary Figure 14. Examples of subspecies-level functional variation (gene level). (a) 

Strains of Lactobacillus jensenii were well-represented in 21 HMP posterior fornix samples. At least two 

(2) subspecies-level clades appear to be present, defined by the presence of gene block a1 or a2 

(highlighted). (b) Strains of Eubacterium eligens were well-represented in 51 HMP stool samples. At least 

three (3) subspecies-level clades appear to be present, defined by the presence/absence of gene blocks 

b1, b2, and b3 (highlighted). 

 

  



Supplementary Figure 15. Example of potential niche-adapted subspecies of Haemophilus 

haemolyticus. Metagenomic “strains” (UniRef90 gene family presence/absence profiles) of this species 

differ across the three oral sites where it was detected. Right-side plots illustrate the coreness, variability, 

and site-specific enrichment of individual genes. Variability peaks at 1.0 for genes detected in exactly 

50% of samples. Site-specific enrichment peaks at 1.0 when the gene is 100% prevalent in a focal site 

and 0% prevalent in all other sites (with -1 corresponding to the exact opposite scenario). 

 

  



SUPPLEMENTARY NOTES 

Supplementary Note 1: Reference hold-out analysis of a complex synthetic metagenome 

 Following the procedures described in the main text and Methods, we produced a 10M-

read synthetic metagenome containing even contributions from 100 non-human-associated 

species (which equated to just over 2x genomic fold-coverage per species). Species were 

defined as “human-associated” if they appeared (with any abundance) in the MetaPhlAn26 

profiles of Human Microbiome Project7 metagenomes. The 100 species were selected at 

random, but constrained to species that were i) quantifiable by MetaPhlAn2 and ii) present in 

ChocoPhlAn and its underlying isolate genome catalogue. As in the synthetic human gut 

metagenome application described in the main text, isolate genomes were randomly mutated at 

3% of positions to simulate novel isolates of known species. 

 Analysis of the complex synthetic metagenome in HUMAnN2’s tiered mode produced 

estimates of gene family (UniRef908) abundance. We compared those profiles to gold standards 

based on i) species’ genomic fold-coverage values and ii) per-species, per-gene read sampling 

(with the latter accounting for the fact that some genes are sampled more or less at random). As 

expected, random sampling induces a non-trivial error that cannot be explained by HUMAnN2: 

even if HUMAnN2 “places” each read into the correct gene family, it is not aware that some of 

these families were over- or under-sampled during synthetic metagenome creation. Indeed, 

while most species’ gene-level accuracy (1 - Bray-Curtis dissimilarity) ranged from ~0.8 to 0.9 

using the fold-coverage-based gold standard, this range improved to ~0.9 to 1.0 when using the 

sampled-reads-based gold standard (Supplementary Fig. 2). Hence, even in this complex 

mock community, HUMAnN2’s per-gene abundance estimation is performing close to optimally 

for the majority of species. 

 We further applied this complex synthetic metagenome to perform a reference hold-out 

analysis. This procedure evaluates how HUMAnN2’s accuracy (and runtime) scale depending 

on the proportion of the community that is identified in the first tier of the tiered search 

(taxonomic prescreen). To accomplish this, we randomly selected subsets of the 100 species in 

the community as “unquantifiable” (deleting them from the MetaPhlAn2 taxonomic prescreen 

output). Reads from these species then pass directly to translated search and are not mapped 

to their corresponding pangenomes. We considered hold-out sets of size 0, 10, 20, 30, 40, 50, 

60, 70, 80, 90, and 100 species, with five replicates per hold-out set size (with the exception of 0 

and 100). Larger hold-out sets correspond to more poorly-characterized communities (in which 

more alignment will be done during translated search). Conversely, smaller hold-out sets 

correspond to better-characterized communities (in which more alignment can in principle be 

done during the pangenome search). 

 Consistent with the synthetic human gut metagenome analysis from the main text, 

community-level accuracy was strongest when no species were held out of the pangenome 

search (85%) and least-accurate when all species were held out of the pangenome search, i.e. 

a pure translated search analysis (40%; Supplementary Fig. 2). We observed that accuracy 

decreased linearly for increasing numbers of held-out species, with relatively little variation 



across the sets of five replicates. This suggests that the accuracy of tiered search is more a 

function of the number of species identified during the taxonomic prescreen and not the specific 

nature of those species. Put another way, the loss of accuracy incurred by searching a species’ 

reads against a comprehensive protein database (versus the species’ own pangenome) 

appears to be fairly well conserved across these 100 species. 

Also as expected, HUMAnN2’s runtime increased with the number of held-out species, 

which equates to more reads being passed to the (slower) translated search tier of the tiered 

search (Supplementary Fig. 2). Runtime was shortest when none of the 100 species were held 

out (1.5 hours, 8 CPU cores) and longest when all were held out (pure translated search, 4.2 

hours). As in the synthetic gut metagenome example from the main text, most time during tiered 

search was spent during the translated search phase, even for small numbers of held-out 

species. This underscores the incredible speed of nucleotide-level search against a sample-

specific pangenome relative to comprehensive translated search. 

Supplementary Note 2: Unclassified abundance in synthetic evaluations 

Reads that failed to align to a pangenome in the second tier of HUMAnN2’s tiered 

search pass to the final search tier: comprehensive translated search. Although the synthetic 

metagenomes used in our evaluations only included reads from mock isolate genomes of 

characterized species, it is not surprising for a subset of those reads to fail to map to the 

corresponding species’ pangenomes and be passed to translated search (resulting in an 

unexpected “unclassified” stratum in the output): this will be the case for i) coding reads that 

were highly diverged from the corresponding sequence in the pangenome database, ii) coding 

reads that spanned multiple genes, and iii) reads drawn from (apparent) non-coding regions. 

Reads of the first type can still be assigned to correct gene families during translated search, 

which does not impact community-level error, but does increase stratified error. Reads of all 

three types were vulnerable to spurious mapping during translated search, resulting in false 

positive detection events (though HUMAnN2 is optimized to reduce such errors; see Online 

Methods and Supplementary Fig. 5). Passage of reads into translated search made a minority 

contribution (~11%) to the total absolute error of the stratified evaluation. 

Supplementary Note 3: Additional HUMAnN2 performance considerations 

HUMAnN2’s tiered search was 3.0x faster than pure translated search in the synthetic 

gut metagenome evaluation and 2.4x faster in the synthetic complex metagenome evaluation 

(introduced in Supporting Note 1). Bypassing translated search entirely (which is reasonable as 

a first-pass in well-characterized communities) offered a further ~2x speedup in both scenarios. 

Notably, this is consistent with a 5-6x speedup for tiered search relative pure translated search 

in the limit where no reads are passed to translated search. A less-extreme approach for 

accelerating HUMAnN2 translated search is to limit its scope (database) to proteins annotated 

to metabolic reactions. This approach limits the coverage of “unclassified” gene families but not 

the coverage of “unclassified” pathway abundance. Using a reaction-filtered protein database 

offers close to a 2x speedup during tiered search of well-characterized communities and a >3x 

speedup of pure translated search. 



HUMAnN2’s translated search performance is similar when using UniRef90 versus 

UniRef50 databases (~1.5K reads processed / second), despite the former being ~2x larger. 

This is due to the fact that finding valid alignments to UniRef50 (>50% amino acid identity) 

requires a more sensitive search than finding valid alignments to UniRef90 (>90% identity). This 

in turn requires relaxing the seed parameters for alignments, which results in more spurious 

seed events, and thus considering a greater proportion of the UniRef50 database (relative to 

UniRef90). Using HUMAnN2 in “UniRef50 mode” will automatically adjust the translated search 

step to operate in this more sensitive manner (individual search parameters can also be 

independently tuned by the user). The taxonomic prescreen and pangenome search steps 

proceed identically in UniRef90 mode versus UniRef50 mode, with the appropriate species-

stratified gene families (i.e. UniRef90 gene families versus UniRef50 gene families) included in 

the main output. “UniRef50” mode is potentially preferred when profiling poorly characterized 

communities. In such cases, more sequencing reads are expected to pass to translated search, 

where they may benefit from the relaxed UniRef50 homology thresholds. 

We evaluated HUMAnN2 in UniRef50 mode using the synthetic gut metagenome 

introduced in the main text. In tiered mode, community-level sensitivity, precision, and overall 

accuracy (1 - Bray-Curtis distance) were similar to those calculated in the UniRef90 evaluation: 

86%, 75%, and 86%. Precision and accuracy were slightly reduced due to the greater influence 

of spurious mapping during the translated search phase (a natural consequence of relaxing the 

stringency of the translated search in UniRef50 mode). This difference was more apparent when 

profiling with pure translated search, where overall accuracy was reduced to 40% from 67% in 

the UniRef90 evaluation. However, this difference is somewhat misleading, as it results in part 

from read mass being split between target UniRef50 gene families (i.e. those spiked into the 

synthetic metagenome) and close homologs: a further consequence of less-stringent translated 

search. However, when evaluating HUMAnN2’s pure translated search on more coarse-grained 

functions (where homologous UniRef50s tend to sum to the same higher-level group), accuracy 

was higher and more in-line with UniRef90-based results. For example, when regrouping 

UniRef50 and UniRef90 abundance to KEGG Orthogroups (KOs)9, overall accuracy was 77% in 

the UniRef50 evaluation and 81% in the UniRef90 evaluation. 

Supplementary Note 4: Extended methods for HUMAnN2 applications 

Analysis of HMP metagenomes 

 We profiled 397 quality-controlled shotgun metagenomes from the first wave of the 

Human Microbiome Project7 (downloaded from http://hmpdacc.org). We selected samples to 

highlight the first sampling visit from HMP subjects at six major body sites (nares, buccal 

mucosa, supragingival plaque, tongue, gut, and posterior fornix). Longitudinal samples and 

technical replicates were excluded. These samples were profiled with HUMAnN2’s tiered search 

under default settings using UniRef90 as a protein database. Mapping rates and performance of 

the tiered search are reported in Supplementary Fig. 3. 

Relative to other human body sites, skin (nares) metagenomes contained smaller 

fractions of reads that were explainable during pangenome search (median ~25%) with a 

considerable boost in total mapping occurring during translated search (median ~60% of reads 

http://hmpdacc.org/


mapped after translated search). There are a number of possible explanations for this 

observation, including an abundance of DNA reads derived from i) uncharacterized cellular 

microbes, ii) DNA viruses (not included in this pangenome analysis), iii) residual human reads 

that survived host decontamination, and iv) other sources of non-microbial contamination (all of 

which would map during translated search but not during pangenome search). To distinguish 

among these possibilities, we examined the taxonomic distribution of gene families that 

recruited reads during translated search of nares samples (as inferred from LCA annotations of 

UniRef90 sequence families). Averaging over samples, 84.4% of unclassified mapping was 

assigned to bacteria-specific protein families, 2.5% to virus-specific protein families, and 7.0% to 

eukaryote-specific protein families [including 1.3% to Basidiomycota (a fungal phylum), 1.3% to 

Streptophyta (a plant phylum), and 4.0% to Chordata (the phylum to which humans belong)]; the 

remaining ~6% of unclassified abundance could not be assigned at the kingdom level. This 

suggests that the majority of reads mapped during translated search derived from previously 

uncharacterized bacteria, with a minority derived from viruses/contamination. 

Analysis of Red Sea metagenomes 

We applied HUMAnN2 to profile 45 metagenomes collected during the 2011 KAUST 

Red Sea Expedition10. First, MetaPhlAn2 was run on all samples as a “joint prescreen” for all 

samples. In other words, if a species was detected in any of the 45 metagenomes, then its 

pangenome was included in the analysis of all samples. This “dataset-specific” (versus sample-

specific) pangenome was used to add robustness to missing MetaPhlAn2 marker genes, which 

we expect to be more common in less-well-characterized communities. 388 pangenomes were 

selected in this manner, including many examples from known marine clades, such as 

Nitrospina, Nitrospira, Prochlorococcus, Synechococcus, Synechocystis, Candidatus 

Pelagibacter, alphaproteobacterium (SAR11 clade), Polymorphum, and SAR116 cluster. Each 

sample was then profiled against the custom pangenome database and UniRef50 protein 

database via tiered search. UniRef50 abundances were regrouped to KO abundances using the 

“humann2_regroup_table” script and UniRef50-to-KO mapping to enable comparison with 

HUMAnN1-based profiles. KO abundance was normalized over KO-mapped reads during 

HUMAnN1-HUMAnN2 comparison and over total reads in all other applications. 

Compared with earlier HUMAnN1 profiles of the same samples, HUMAnN2 explained 

similar fractions of reads (16.2–42.5% with mean 26.2% versus 16.6–35.5% with mean 25.5%). 

This likely reflects a balance between the larger databases underlying HUMAnN2 combined 

with its stricter mapping criteria. Of the 6,919 KOs identified by either method, 4,609 were 

identified by both (shared KOs), 1,166 by HUMAnN1 only, and 1,144 by HUMAnN2 only 

(including the examples discussed above). HUMAnN1-only KOs contained examples of “retired” 

KOs that are no longer annotated to UniRef sequences; the vast majority (>95%) of mapped 

reads aligned to shared KOs. Relative abundance estimates among shared KOs were 

extremely well correlated between HUMAnN 1 and 2, despite being derived from independent 

sequence collections (KEGG vs. UniRef50). Notably, there was a decrease in correlation 

strength at greater depths, particularly in samples from the Southern Red Sea. This depth- and 

latitude-dependent effect may arise from the poorer representation of mesopelagic (deep) taxa 

in the reference genome databases. 



Analysis of strain-level functional variation 

 It is only meaningful to discuss variation in the contribution of a function by a species 

when that species is otherwise well-covered. Without this assurance, variable contribution could 

be driven by undersampling of the species (or simply species presence/absence). Taking 

inspiration from PanPhlAn11, we examined stratified HUMAnN2 gene family profiles of HMP 

metagenomes for species that recruited reads to i) a large number (≥500) of UniRef90 gene 

families with ioi) reasonably strong coverage (median non-zero abundance ≥10 RPK), and iii) 

reasonably consistent coverage (3rd quartile / 1st quartile of non-zero abundances <2.5). We 

refer to such species as “well-represented” in a sample. The first two criteria ensure that a 

metagenomic strain’s coverage of its corresponding pangenome is sufficiently high for zero-

abundance gene families to be believed as “non-detect” events, while the third and final criterion 

ensures that a single, dominant strain of the species is present. We focused on strains of 

species that were well-represented in at least 10 metagenomes from a given body site. To add 

robustness to false positive gene calls, we binarized strains’ continuous gene abundance values 

to presence/absence (1/0) data using the square root of the strain’s median non-zero 

abundance as a threshold for “confident detection.” These binary strain representations (and 

their constituent gene families) could then be compared/clustered across samples using 

Jaccard distance as a similarity measure. 

 To identify functional enrichments among variably encoded genes from a given species, 

we assigned each gene a score corresponding to its prevalence (after binarization) in samples 

where the species was well-represented. We then applied a simple functional enrichment 

analysis (term-positive versus term-negative Wilcoxon rank-sum test) to these scores, focusing 

on a reduced (“informative”12) set of GO Biological Process terms bundled with HUMAnN2 

(these terms are all associated with ≥1,000 UniRef90 identifiers, but no term has a descendant 

term with ≥1,000 associations). Enrichments were carried out per-species and subjected to false 

discovery rate (FDR) correction13. 

Analysis of IBDMDB multi’omic data 

We profiled paired metatranscriptomes and metagenomes from subjects enrolled in the 

iHMP IBD pilot (http://ibdmdb.org) using HUMAnN2 (version 0.7.0). Sequencing reads were 

processed with KneadData (version 0.5.1) including quality trimming (MAXINFO:80:0.5 

MINLEN:50) and length filtering followed by decontamination. Specifically, all reads were filtered 

against the human genome (hg19 build), and metatranscriptomic reads were additionally filtered 

against the NCBI human genome RNA database and SILVA rRNA database14. Only meta’omes 

with at least 1 million reads were including for further analyses, which resulted in 78 paired 

metatranscriptomes and metagenomes. Metagenomes were analyzed by HUMAnN2 under 

default settings. Metatranscriptomes were similarly analyzed, but conditioned upon the species 

detected in their corresponding metagenomes (i.e. each DNA/RNA sample pair was mapped 

against the pangenomes of species detected in the DNA sample). We isolated pathways for 

diversity analysis following the same procedures described for HMP samples in the main text 

(i.e. pathways present in the majority of samples and with a low, average “unclassified” 

component to facilitate contributional diversity calculation). 

http://ibdmdb.org/


 

Supplementary Note 5: Synthetic gut metatranscriptome evaluation 

We simulated metatranscriptomes following a modified version of our protocol for 

simulating metagenomes (Online Methods). Instead of sampling synthetic fragments from 

entire isolate genomes, synthetic metatranscriptome fragments were sampled from isolate 

genomes’ protein-coding regions only. Sampling from a given coding region (“transcript”) was 

proportional to the product of i) the target metagenomic abundance of the transcript’s source 

species, ii) the length of the transcript, and iii) a random draw from ln N(0, 1) (which adds log-

normal variation in gene expression within-species). These proportions were further applied to 

produce gold-standard abundances for gene families within each synthetic metatranscriptome, 

which could then be summed to other transcript-level abundances (e.g. COGs). 

We evaluated the six functional profiling methods considered in Fig. 1e on a synthetic 

gut metatranscriptome (Supplementary Fig. 6). This metatranscriptome incorporated the same 

human gut species and staggered species abundances as the synthetic gut metagenome from 

the main text (see Fig. 1b). Trends in COG quantification accuracy and method performance on 

the synthetic gut metatranscriptome were similar to those observed in the metagenomic 

evaluation. In particular, HUMAnN2’s tiered search achieved sensitivity, precision, and accuracy 

of 89%, 100%, and 93%, respectively. Most methods (including HUMAnN2) exhibited slightly 

reduced sensitivity in the metatranscriptomic evaluation, which we can attribute to 

undersampling of low-abundance transcripts in low-abundance species. 

Supplementary Note 6: Evaluations on novel isolate genomes 

In order to evaluate functional profiling methods’ robustness to novel genomes, we 

constructed two additional synthetic metagenomes from isolate genomes deposited in IMG15 in 

2017. These genomes are therefore newer than the methods and/or underlying databases 

being evaluated, including HUMAnN2’s databases. We restricted our selection to genomes that 

were tagged as “finished” and “high quality” in IMG. The first of these synthetic metagenomes 

(the “novel strains” metagenome) was drawn from 20 novel isolates of species that were already 

represented in HUMAnN2’s pangenome database (i.e. having one or more existing isolate 

genomes) and which could be correctly identified by MetaPhlAn2. The second of these synthetic 

metagenomes (the “novel species” metagenome) was drawn from 20 novel isolates of novel 

species, with “novel species” defined here as “not present in HUMAnN2’s pangenome 

database” and “not classified to the species level by MetaPhlAn2.” In both cases, we disallowed 

adding more than one new isolate from the same species. Subject to these constraints, the two 

sets of 20 isolate genomes were chosen at random. The novel strains metagenome provides an 

additional benchmark for functional profiling of a real-world community composed of known 

species, while the novel species metagenome provides a benchmark for a real-world 

uncharacterized community. 

Reads were sampled from the novel isolate genomes following the procedures used to 

make the synthetic gut metagenome in the main text (Online Methods). Briefly, the species’ 

relative abundances were geometrically staggered, and 5M genomic fragments were sampled 



from their genomes in proportion to relative abundance and genome size. Fragments were then 

converted to pairs of 100-nt sequencing reads (10M reads total, 1 Gnt) using ART16. Unlike the 

main-text evaluations, we did not spike additional synthetic biological sequence variation into 

these metagenomes, as they are already expected to contain natural biological sequence 

variation (relative to reference genomes in the tools’ databases). 

In order to make the “previously unseen” nature of these genomes the one new variable 

in these evaluations, we constructed their gold standards in the same way as before: annotating 

the new isolate genomes against UniRef90 (and Uniref50) by sequence alignment and then 

inferring COG annotations from UniProt17 (following the procedure for pangenome annotation 

introduced in Online Methods). This annotation procedure worked well for the novel isolates of 

known species, with 83% of IMG-defined ORFs annotated to a UniRef90 family, and 91% 

annotated to a UniRef50 family. However, for the novel isolates of novel species, only 20% of 

ORFs could be assigned to UniRef90, along with a more reasonable 78% assigned to 

UniRef50s. Hence, while we used a UniRef90-based gold standard for all other evaluations, we 

concluded that this would not be optimal for the “novel species” metagenome. Instead, we 

constructed both UniRef90- and UniRef50-based COG gold standards for each new 

metagenome, and performed a separate evaluation on each. Compared to the UniRef90-based 

gold standard, the UniRef50-based gold standard offers better coverage but potentially worse 

specificity. A further coverage/specificity trade-off was offered by IMG’s own COG annotations, 

which are based on best BLAST hits. In our view, this trade-off was not reasonable, as >50% of 

IMG’s COG annotations were based on alignments with <40% amino acid identity. Treating 

such remote-homology annotations as a “gold standard” would reward best-BLAST-hit 

approaches to functional profiling, which we have previously shown to be suboptimal1, while 

penalizing approaches that favor specificity. 

In the context of the “novel isolates” metagenome (with a UniRef90-based gold 

standard), trends in accuracy and performance across the six functional profiling methods were 

similar to those observed for the synthetic gut metagenome comparison (see Fig. 1d). 

Specifically, HUMAnN2’s tiered search was more accurate and 3x faster than its own pure 

translated search implementation, which was in turn more accurate than the four alternative 

translated search implementations (Supplementary Fig. 7). These results are due in part to 

HUMAnN2 i) identifying that the isolate genomes in this community belonged to known species, 

ii) mapping many of their reads to homologous sequences in the existing pangenomes, and iii) 

forwarding unmapped reads (e.g. from novel pangenome content) to translated search. Trends 

were similar in the UniRef50-based evaluation of this metagenome (Supplementary Fig. 8). 

The accuracy of all methods improved in this context, though improvements were more notable 

for the non-HUMAnN2 methods, which tend to favor sensitivity over specificity (and hence 

benefit from higher-coverage, relaxed-homology annotations). 

In the evaluation on the “novel species” metagenome, HUMAnN2’s tiered search did not 

identify any known species in the community (as expected), and thus forwarded all community 

reads to translated search. Hence, for this metagenome, HUMAnN2 in “tiered search” and “pure 

translated search” produce identical results in roughly the same amount of time. (Note that, 

while the taxonomic prescreen does not identify any known species in the tiered mode, it still 



contributes to total runtime. However, its contribution was negligible compared with the duration 

and variability of translated search execution.) For the sake of consistency, we performed an 

evaluation on this community using UniRef90-defined COGs, as in all preceding evaluations 

(Supplementary Fig. 9). While HUMAnN2 performed well in that context, precision-based 

comparisons must be considered critically due to the low coverage of UniRef90 annotations in 

this community (as discussed above). The high-coverage, UniRef50-based evaluation is easier 

to interpret (Supplementary Fig. 10). While HUMAnN2 remained among the most efficient 

methods in that evaluation, several methods (including HUMAnN2) produced reasonably 

accurate profiles. This finding is consistent with the fact that the UniRef50 gold standard was 

constructed by translated search with relaxed homology thresholds: mirroring the translated 

search methods used by the various profiling methods in this evaluation. 

Supplementary Note 7: Comparison of HUMAnN2 with metagenomic assembly 

 Unlike reference-based approaches, metagenomic assembly is ideal for identifying novel 

gene content in a microbial community, as well as novel genomes and gene arrangements. 

However, relative to reference-based functional profiling, we expect assembly to struggle to 

reconstruct known genes from a metagenome that are not well-covered by sequencing reads. 

(This assertion applies even at very high read depth, where a fraction of community genes will 

recruit reads at <1x coverage, and hence be detectable by mapping but not assembly.) To 

evaluate this hypothesis, we applied a modern metagenomic assembler (metaSPAdes18) to the 

synthetic gut and complex metagenomes introduced above and in the main text (with modest 

but realistic read depths of 10M reads / 1 Gnt). We then i) called ORFs in the resulting contigs, 

ii) annotated those ORFs against UniRef90 following the procedures used to annotate 

HUMAnN2's pangenome database (with adjustments to avoid penalizing partially assembled 

ORFs), and iii) compared assembled versus expected gene families. 

More specifically, we ran metaSPAdes using 8 CPU cores, consistent with the resources 

allotted to HUMAnN2 and the other reference-based profilers in their evaluations. Synthetic 

reads were provided to metaSPAdes as paired FASTQ files without prior filtering (again, 

equivalent to the evaluation of the reference-based profilers). Resulting contigs were passed to 

Prodigal19 for open reading frame (ORF) calling in “-p meta” mode. We annotated called ORFs 

against UniRef90 using a modified version of the procedure we applied to annotate HUMAnN2’s 

pangenome database (Online Methods). Specifically, translated ORFs were aligned against 

UniRef90 using DIAMOND20. The best hit (if any) with >90% amino acid alignment identity, 

>80% coverage of the ORF, and >50% coverage of the UniRef90 representative sequence was 

assigned as an annotation for the ORF. Note that the required coverage of the UniRef90 

representative sequence (50%, versus 80% during pangenome annotation) was relaxed to 

avoid penalization of partially assembled ORFs. We explored a modified version of this protocol 

in which ORFs were annotated to all UniRef90 representatives that matched the above 

conditions (instead of just the best match): this ultimately tended to reduce precision with only 

minor gains in sensitivity (~1%), and so the best-match approach was favored in the evaluation. 

Species-specific genes were defined on a per-metagenome basis as ORFs that mapped 

uniquely to a particular UniRef90 family. 



Assembling and annotating the synthetic gut metagenome took 3.4 hours using 8 CPU 

cores (~4x longer than HUMAnN2’s tiered search) but with surprisingly low peak memory use 

(Max RSS, 7.4 GB). Precision was high at 85%, indicating that relatively few ORFs were 

assigned to incorrect gene families. However, sensitivity was low at 31% (compared with 

HUMAnN2’s 91% on the same dataset), indicating that many expected UniRef90 families were 

not successfully reconstructed. On a per-genome level, 5% of species-specific genes were 

identified from a genome at ~1x fold-coverage, increasing to 69% for a genome at 35x fold-

coverage (compared with 93-100% for HUMAnN2). Thus, while sensitivity of assembly was 

particularly poor at low coverage, recovering full genomes from the synthetic metagenome was 

challenging even at high fold-coverage. 

In the 100-species complex synthetic metagenome, precision of assembly was similarly 

high at 92% and sensitivity low at 23%. However, performance was considerably worse (10.0 

hours runtime; 30.3 GB peak memory use), despite the input dataset being of the same size 

(10M reads, 1 Gnt). This is in stark contrast to HUMAnN2's performance, which scaled more 

predictably with input size: real-world runtime was roughly linear in the input size, and memory 

use scaled sub-linearly, with small metagenomes (up to 10M reads, 1 Gnt) requiring <16 GB of 

memory and larger metagenomes (up to 100M reads, 10 Gnt), requiring <32 GB 

(Supplementary Fig. 3). In contrast, assembling large metagenomes can require 100s of GBs 

of memory: necessitating specialized hardware and limiting the number of samples that can be 

processed in parallel in cluster environments. Thus, for profiling known genomes and gene 

families, HUMAnN2 can be considerably more accurate and resource-efficient than an 

assembly-based approach. 
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